Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations.

نویسندگان

  • Yi Zhu
  • Jianke Yang
چکیده

Weak interactions of solitary waves in the generalized nonlinear Schrödinger equations are studied. It is first shown that these interactions exhibit similar fractal dependence on initial conditions for different nonlinearities. Then by using the Karpman-Solov'ev method, a universal system of dynamical equations is derived for the velocities, amplitudes, positions, and phases of interacting solitary waves. These dynamical equations contain a single parameter, which accounts for the different forms of nonlinearity. When this parameter is zero, these dynamical equations are integrable, and the exact analytical solutions are derived. When this parameter is nonzero, the dynamical equations exhibit fractal structures which match those in the original wave equations both qualitatively and quantitatively. Thus the universal nature of fractal structures in the weak interaction of solitary waves is analytically established. The origin of these fractal structures is also explored. It is shown that these structures bifurcate from the initial conditions where the solutions of the integrable dynamical equations develop finite-time singularities. Based on this observation, an analytical criterion for the existence and locations of fractal structures is obtained. Lastly, these analytical results are applied to the generalized nonlinear Schrödinger equations with various nonlinearities such as the saturable nonlinearity, and predictions on their weak interactions of solitary waves are made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separatrix Map Analysis for Fractal Scatterings in Weak Interactions of Solitary Waves

Previous studies have shown that fractal scatterings in weak interactions of solitary waves in the generalized nonlinear Schrödinger (NLS) equations are described by a universal second-order separatrix map. In this paper, this separatrix map is analyzed in detail, and hence a complete characterization of fractal scatterings in these weak interactions is obtained. In particular, scaling laws of ...

متن کامل

Universal map for fractal structures in weak interactions of solitary waves.

Fractal scatterings in weak solitary-wave interactions are analyzed for generalized nonlinear Schrödiger equations (GNLS). Using asymptotic methods, these weak interactions are reduced to a universal second-order map. This map gives the same fractal-scattering patterns as those in the GNLS equations both qualitatively and quantitatively. Scaling laws of these fractals are also derived.

متن کامل

Fractal scattering in weak interactions of solitary waves

Weak interactions of solitary waves refer to the interactions where two solitary waves initially are well separated and having almost the same velocities. These interactions occur due to the tail overlap between the two waves. Previous work has shown that in a large class of generalized NLS equations, weak interactions of solitary waves exhibit a universal fractal scattering phenomenon, i.e., t...

متن کامل

Stability in H 1 of the Sum of K Solitary Waves for Some Nonlinear Schrödinger Equations

In this article we consider nonlinear Schrödinger (NLS) equations in R for d = 1, 2, and 3. We consider nonlinearities satisfying a flatness condition at zero and such that solitary waves are stable. Let Rk(t, x) be K solitary wave solutions of the equation with different speeds v1, v2, . . . , vK . Provided that the relative speeds of the solitary waves vk − vk−1 are large enough and that no i...

متن کامل

Long Time Motion of NLS Solitary Waves in a Confining Potential

We study the motion of solitary-wave solutions of a family of focusing generalized nonlinear Schrödinger equations with a confining, slowly varying external potential, V (x). A Lyapunov-Schmidt decomposition of the solution combined with energy estimates allows us to control the motion of the solitary wave over a long, but finite, time interval. We show that the center of mass of the solitary w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007